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Abstract

Accurate plC50 prediction is vital for assessing the toxicity and potency of chemical
compounds, including pesticides. This study leverages computational and experimental
approaches to achieve this goal. A Graph Isomorphism Network (GIN) was pretrained on a large
PubChem dataset (117,520 molecules) to learn node-level molecular features and fine-tuned on a
smaller dataset (14,611 molecules) containing experimentally determined plC50 values. The model
predicts plC50 values directly from molecular SMILES strings. Validation of the GIN's predictions
was conducted using spectrophotometric assays for two pesticides, of differing potency Profenofos

Results

GIN Prediction Results: The GIN model was saved at the best validation loss of 0.568
after going through 10 training epochs. GIN’s predicted plC50 values for Profenofos and
Dichlorvos were, to 3 significant figures, 4.22 and 3.00 respectively.

Experimental Results: The experimentally-obtained plC50 values for Profenofos and
Dichlorvos were 3.12 and 3.01 respectively. The comparison between both sets of results is
demonstrated in Fig. 3.

and Dichlorvos, to determine empirical pIC50 values.

Introduction

Molecular property prediction is a key area of computational chemistry, aimed at developing
models that map molecular structures to their properties. The accurate prediction of a
compound’s inhibitory concentration (pIC50) is a cornerstone of toxicological studies, allowing
chemical structures, simulation, and physical data to be integrated when predicting health risks
and other toxicological information. Graph Isomorphism Networks (GINs) rise to the challenge by
representing molecules as graphs, capturing both local and global features to link chemical
topology to biological activity. Furthermore, transfer learning has emerged as an essential
technique to address the scarcity of labelled data and high dimensionality of feature spaces. In
the USA, quantitative structure—activity relationships (QSARSs) predictions are used to evaluate
two to three thousand chemicals each year and to assess a significant portion of the toxicity
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Fig. 3. Bar graph of predicted vs experimental pIC50 values for Profenofos and Dichlorvos
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information. However, traditional QSAR models often rely on predefined molecular descriptors
(e.g., atom counts, bond types, molecular weight) and linear or nonlinear regression models to
establish relationships between molecular features and biological activity. Unlike the static
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descriptors of QSAR, the GIN directly learns from molecular graph representations and captures
topological and relational features more comprehensively. This project presents a modern, deep-
learning-driven alternative to traditional QSAR approaches, offering greater flexibility, and
adaptability in predicting pIC50 values.

Methods

Data Preprocessing Pipeline

Molecular structures in both datasets were represented using the SMILES notation. To
prepare the data for the GIN model, each SMILES string was converted into a graph structure.

Feature extraction was conducted to provide meaningful inputs to the GIN model at both the
node and graph levels. To extract node level features, each atom in the graph was assigned a
feature vector encoding its chemical properties, such as atom type, hybridisation state and
presence of formal charges. In addition, graph-level descriptors such as molecular weight,
lipophilicity and topological polar surface area were computed, summarising global molecular
properties particularly relevant for pIC50 prediction.

Model Architecture and Pretraining

To build a robust feature extractor, the GIN was pretrained on a large toxicity dataset from
PubChem via a self-supervised learning task, where the goal was to predict node-level features,
such as atomic environments or chemical properties. Using the generative reconstruction
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Fig. 4. Sigmoidal curves of percentage AChE inhibition against log-transformed concentration of Profenofos (left) and
Dichlorvos (right) across four experiments, as plotted on PRISM

Best-fit values Expt 1 Expt 2 Expt 3 Expt 4 Mean Best-fit values Expt 1 Expt 2 Expt 3 Expt 4 Mean
Top 104.5 102.1 105.4 99.58 102.895 Top 101.7 101.9 103.9 104.2 102.925
Bottom 0.3186 | -1.396 | -0.7566 | -0.05916 | -0.47329 Bottom 1.092 0.686 | -0.1098 | -0.06993 |0.3995675
LogIC50 3.215 2.978 3.227 3.055 3.11875 LogIC50 3.07 2.96 3 2.996 3.0065
HillSlope 1.254 1.224 1.036 1.072 1.1465 HillSlope 1.356 1.397 1.37 1.233 1.339
IC50 1642 951.2 1686 1134 1353.3 ICS50 1176 911.6 1001 989.7 | 1019.575
Span 104.2 103.5 106.2 99.64 103.385 Span 100.6 101.2 104 104.3 102.525
Goodness of Fit Goodness of Fit
Degrees of Freedom 4 4 4 4 Degrees of Freedom 4 4 4 4
R square 0.9984 0.9977 0.9988 0.999 0.998475 R square 0.999 0.9993 0.9997 0.9995 0.9994
Absolute Sum of Squares| 22.05 2952 14.98 12.34 Absolute Sum of Squares 13.28 7.926 3.662 6.321
Sy.x 2.348 2.716 1.935 1.757 Sy.x 1.822 1.408 0.9568 1.257

Fig. 5. Statistical analysis of critical values, particularly pIC50 (in red) and R? (in blue), for Profenofos (left) and
Dichlorvos (right)

technique, we masked the features of a random batch of nodes, forwarded the masked graph
through the GIN encoder and reconstructed the masked node features. After pretraining, the GIN
was fine-tuned on a smaller dataset with corresponding pIC50 values over several epochs.
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Fig. 1. Scatter plots of predicted vs actual pIC50 values using simpler models: (from left to right) simple
linear regression, random forest regression and GIN

Discussion

The GIN demonstrated relatively strong performance in predicting plC50 values from
molecular SMILES strings, highlighting the model’s ability to capture the relationship between
molecular structure and inhibitory potency. Comparing the predicted and experimental values,
the GIN achieved a better correlation for Dichlorvos. In contrast, for Profenofos, the
discrepancy between the predicted and experimental values for Profenofos was more
pronounced, suggesting that the model struggled more with capturing the complex molecular
features of this compound. Dichlorvos achieved an R? value of 0.9994, indicating an almost
perfect fit between the experimental data and the sigmoidal curve. This high R? suggests that
the enzyme inhibition data followed a consistent pattern with minimal variability, making it
easier for the GIN model to predict the pIC50 value accurately. Profenofos, in contrast,
achieved an R? of 0.9985, still high but slightly lower than Dichlorvos. This minor drop in R?
reflects a slight increase in variability in the experimental data.

The observed discrepancy may stem from (i) chemical complexity: Dichlorvos is a simpler
molecule with a more straightforward structure; Profenofos’ bulkier, more intricate structure,
with a large aromatic ring system adds more variability to the molecular structure; (ii) training
data bias: the pretraining dataset may have overrepresented simpler molecules and
underrepresented complex aromatic systems; (iii) interaction dynamics: while Dichlorvos might
have more predictable interactions, Profenofos’ steric hindrance and complex binding dynamics
may pose challenges for the model.

Model Mean squared error
Simple linear regression 1.4881
Random forest regression 0.5789
Graph isomorphism network 0.5698

Fig. 2. Table of values of mean squared error for each model employed

Experimental Setup

To validate the predictions of the GIN, the toxicities of two pesticides, Profenofos and
Dichlorvos, were experimentally determined using an AChE inhibition assay. Stock solutions were
serially diluted to create eight concentrations for testing. AChE enzyme solution was added to each
well containing one of the pesticide concentrations, the mixtures were incubated at 25°C for 15
minutes. Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid)) and the substrate acetylcholine
were added to the wells. Ellman's assay produces a yellow colour as AChE catalyses the
breakdown of acetylcholine, with the intensity proportional to the enzyme's activity. A
spectrophotometer was used to measure the colour intensity of the solutions and thence the
reaction rates. After the experiment, the percentage inhibition of AChE was calculated and plC50
values of the pesticides were determined using the PRISM GRAPHPAD software, which plotted a
dose-response curve of percentage inhibition against log-transformed pesticide concentration.

Conclusion

This study highlights the GIN’s ability to predict pIC50 values from SMILES strings, bridging
computational modelling and experimental validation in toxicity assessment. AChE inhibition
assays confirmed strong prediction accuracy for Dichlorvos, with more variability for
Profenofos. While reliable for simpler molecules, performance declined with complex
structures, emphasising the need for diverse data and better feature representation. Future
iImprovements could include expanding the dataset with more complex molecules, enhancing
feature extraction for subtle structural details, refining the model for nuanced interactions and
optimising training methods to improve accuracy and generalisability.

The GIN model has broad real-world potential in drug discovery, toxicology, and
environmental science. It can predict the efficacy and toxicity of drug candidates, assess
pesticide toxicity to protect non-target organisms and aid in hazard classification and risk
assessment for industrial chemicals, pharmaceuticals, and pollutants.




